Discrete Probability2
Bayes’ Theorem
- Bayes’ Theorem
- p(E)≠ 0 and p(F) ≠ 0
- Generalized Bayes’ Theorem
- 𝑝(𝐹j|𝐸)= 𝑝(𝐸|𝐹j)𝑝(𝐹j) / ∑𝑝(𝐸|𝐹i)𝑝(𝐹i)
- p(E)≠ 0 for i = 1, 2, …, n
- Bayesian Spam Filters
- B: set of spam messages
- G: set of non-spam messages
- w: particular word
- nB(w), nG(w): the number of messages that it occurs in B and G
- p(w): w가 포함된 스팸 메시지의 확률
- p(w) = nB(w) / |B|
- q(w): w가 포함된 스팸이 아닌 메시지의 확률
- q(w) = nG(w) / |G|
- S: the event that the message is spam
- E: the event that the message contains w
- p(S|E) = p(E|S)p(S) / p(E|S)p(S) + p(E|S-bar)p(S-bar)
p(S|E) = p(E|S) / p(E|S) + p(E|S-bar) (p(S)=p(S-bar) = 1/2)
r(w) = p(w) / (p(w) + q(w))
- Bayesian Spam Filters using Multiple Words