Discrete Probability2

최대 1 분 소요

Bayes’ Theorem

  • Bayes’ Theorem
    • 스크린샷 2022-11-15 오전 2 53 40
    • p(E)≠ 0 and p(F) ≠ 0
  • Generalized Bayes’ Theorem
    • 𝑝(𝐹j|𝐸)= 𝑝(𝐸|𝐹j)𝑝(𝐹j) / ∑𝑝(𝐸|𝐹i)𝑝(𝐹i)
    • p(E)≠ 0 for i = 1, 2, …, n
  • Bayesian Spam Filters
    • B: set of spam messages
    • G: set of non-spam messages
    • w: particular word
    • nB(w), nG(w): the number of messages that it occurs in B and G
    • p(w): w가 포함된 스팸 메시지의 확률
      • p(w) = nB(w) / |B|
    • q(w): w가 포함된 스팸이 아닌 메시지의 확률
      • q(w) = nG(w) / |G|
    • S: the event that the message is spam
    • E: the event that the message contains w
    • p(S|E) = p(E|S)p(S) / p(E|S)p(S) + p(E|S-bar)p(S-bar)
      p(S|E) = p(E|S) / p(E|S) + p(E|S-bar) (p(S)=p(S-bar) = 1/2)
      r(w) = p(w) / (p(w) + q(w))
  • Bayesian Spam Filters using Multiple Words 스크린샷 2022-11-15 오전 2 51 45

카테고리:

업데이트: