Discrete Probability
1 ๋ถ ์์
Introduction to Discrete Probability
- Key Terms
- experiment
- a procedure that yields one of a given set of possible outcomes
- Ex) rolling a dice
- sample space
- the set of possible outcomes
- Ex) {1, 2, 3, 4, 5 ,6}
- event
- a subset of the sample space
- Ex) {2, 4, 6}
- Probability of an Event
- S: a finite sample space of equally likely outcomes
- E: an event
- Probability of E: P(E) = |E| / |S|
- 0โค ๐(๐ธ) โค1
- Complements
- ๐(๐ธ-bar)=1โ๐(๐ธ)
- Unions
- ๐(๐ธ1โช๐ธ2) =๐(๐ธ1) +๐(๐ธ2) โ ๐(๐ธ1 โฉ ๐ธ2)
Probability Theory
- Probability distribution (ํ๋ฅ ๋ถํฌ)
- the function p from the set of all outcomes of the sample space S
- 0โค ๐(๐ ) โค1 for each ๐ โ๐
- โ๐ โ๐ ๐(๐ ) = 1
- Uniform Distribution (ํญ๋ฑ๋ถํฌ)
- ์งํฉ S์ ๊ฐ element์ ํ๋ฅ = 1/n
- p(1) = p(2) = โโโ = p(n) = 1/n
- Probability of an Event
- p(E) = โ๐ โ๐ ๐(๐ )
- Complements and Unions
- ๐(๐ธ-bar)=1โ๐(๐ธ)
- โsโS ๐(๐ ) = 1 = ๐(๐ธ) + ๐(๐ธ-bar)
- ๐(๐ธ1โช๐ธ2) =๐(๐ธ1) +๐(๐ธ2) โ ๐(๐ธ1 โฉ ๐ธ2)
- Combinations of Events
- E1, E2, โฆ is a sequence of pairwise disjoint events in a sample space S

- Conditional Probability (์กฐ๊ฑด๋ถ ํ๋ฅ )
- p(F) > 0
- p(E|F) = ๐(๐ธโฉ๐น)/p(F)
- Independence (๋
๋ฆฝ)
- ๐(๐ธโฉ๐น) = p(E)p(F)
- Pairwise and Mutual Independence
- pairwise independent
- P(AโฉB) = P(A)P(B)
- P(AโฉC) = P(A)P(C)
- P(BโฉC) = P(B)P(C)
- mutually independent
- P(AโฉBโฉC) = P(A)P(B)P(C)
- P(AโฉB) = P(A)P(B)
- P(AโฉC) = P(A)P(C)
- P(BโฉC) = P(B)P(C)
- Bernoulli Trials
- only two possible outcomes(success and failure)
- p: probability of success
- q: probability of failure
- p+q=1
- Binomial distribution
- b(k:n, p) = C(n,k)p^k*q^(n-k)