Induction
Principle of Mathematical Induction
- P(n) is true for all positive integers n 증명
- Basis Step
- P(1) is true 증명
- Inductive Step
- P(k) → P(k+1) is true for all positive integers k 증명
- P(k) : inductive hypothesis
- Basis Step
Proving a summation formula by Mathematical Induction
- Mathematical Induction (the rule of inference)
- ( P(1) ∧ ∀k(P(k) → P(k+1) ) → ∀nP(n)
- U = the set of positive integers
- Strong Induction
- ( (P(1) ∧ P(2) ∧ … ∧ P(k)) → P(k+1) ) → ∀nP(n)
- U = the set of positive integers
Some Useful summation Formula
- ∑i = n(n+1) / 2
- ∑i^2 = n(n+1)(2n+1) / 6
-
∑i^3 = n^2(n+1)^2 / 4
- ∑i = n(n+1) / 2
- Basis Step : P(1) = 1(1+1)/2 = 1 (true)
- Inductive Step: P(k) -> P(k+1)
- P(k+1) = 1+2+…+k+(k+1) = k(k+1)/2 + (k+1)
= k(k+1) + 2(k+1) / 2 = (k+1)(k+2)/2
- P(k+1) = 1+2+…+k+(k+1) = k(k+1)/2 + (k+1)
Conjecturing a formula
- 1=1, 1+3=4, 1+3+5=9, 1+3+5+7=16, 1+3+5+7+9=25
- Conjecture(추측)
- 1+3+5+…+(2n-1) = n^2
- Basis Step: P(1) = 1^2 = 1 (true)
- Inductive Step: P(k) -> P(k+1)
- Inductive Hypothesis: P(k) = 1+3+5+…+(2k-1) = k^2
- P(k+1) = 1+3+5+…+(2k-1)+(2k+1) = k^2 + (2k+1)
= k^2 + 2k + 1 = (k+1)^2
Proving Inequalities
- P(n): n < 2^n
- Basis Step: P(1) = 1 < 2^1 = 2 (true)
- Inductive Step: P(k) -> P(k+1)
- P(k+1): k+1 < 2^k + 1 < 2^k + 2 < 2^k + 2^k = 2x2^k = 2^(k+1)